
首頁 > 新聞中心 > 高壓技術<
中試控股技術研究院魯工為您講解:220kV電纜電性能試驗裝置
ZSBP-44kVA/44kV變頻串聯諧振耐壓試驗裝置
11kV/300mm2電纜1km交流耐壓試驗,電容量≤0.3755uF,試驗頻率30-300Hz,試驗電壓28kV,試驗時間5min。
參考標準:DL/T 849.6-2016,DL/T 474.4-2018
變頻串聯諧振耐壓試驗裝置:ZSBP系列變頻串聯諧振耐壓試驗裝置,中試控股采用調節電源頻率的方式,使得電抗器與被試電容器實現諧振,從而在被試品上獲得高電壓大電流,因其所需電源功率小、設備重量輕體積小在國內外得到了廣泛應用,
是當前高電壓試驗的新方法和潮流。不會出現任何恢復過電壓。試品發生擊穿時,因失去諧振條件,高電壓也立即消失,電弧即刻熄滅,且恢復電壓的再建立過程很長,很容易在再次達到閃絡電壓前斷開電源,
這種電壓的恢復過程是一種能量積累的間歇振蕩過程,其過程長,而且不會出現任何恢復過電壓。
ZSBP-44kVA/44kV變頻串聯諧振耐壓試驗裝置主要技術參數
設備的重量和體積大大減少。串聯諧振裝置中,省去了笨重的大功率調壓裝置和普通的大功率工頻試驗變壓器,而且,諧振激磁電源只需試驗容量的1/Q,中試控股使得系統重量和體積大大減少,一般為普通試驗裝置的1/10-1/30。
有效改善輸出電壓波形。諧振電源是諧振式濾波電路,能改善輸出電壓的波形畸變,獲得很好的正弦波形,有效防止了諧波峰值對試品的誤擊穿。
防止大的短路電流燒傷故障點。在串聯諧振狀態,當試品的絕緣弱點被擊穿時,電路立即脫諧,回路電流迅速下降為正常試驗電流的1/Q,而用并聯諧振或者試驗變壓器做耐壓試驗時,擊穿電流立即上升幾十倍,兩者相比,短路電流與擊穿電流相差數百倍。串聯諧振能有效的找到絕緣弱點,又不存在大的短路電流燒傷故障點的憂患。
ZSBP-44kVA/44kV變頻串聯諧振耐壓試驗裝置容量驗證
裝置容量定為44kVA,分兩節電抗器,電抗器單節為22kVA1A
試驗時設備組合方式
組合方式
被試品對象 電抗器選擇
(22kVA/22kV兩節) 激勵變壓器
輸出端選擇 試驗電壓(kV)
10kV/300mm2電纜1km 使用電抗器兩節并聯 1.5kV ≤22kV
10kV開關等電氣設備 使用電抗器兩節串聯 3kV ≤42kV
如何選擇合適的變頻串聯諧振耐壓試驗裝置?
什么是串聯諧振?
但經過長期的研究,采用工頻耐壓的方式相對于直流耐壓穩定性,安全性要好,由于電氣設備的容量大,電壓高,往往像油浸式試驗變壓器一類的工頻耐壓設備無法滿足測試要求,在國內,為了達到這一目的,基本通過變頻串聯諧振來實現測量。
10kV開關等電氣設備的交流耐壓試驗,試驗頻率30-300Hz,試驗電壓不超過42kV,試驗時間1min。
1.額定容量:44kVA
2.額定電壓:22kV;44kV
3.額定電流:2A;1A
4.測量精度:系統有效值1.5級
5.工作頻率:30-300Hz
6.裝置輸出波形:正弦波
7.品質因素:裝置自身Q≥30(f=45Hz)
8.波形畸變率:輸出電壓波形畸變率≤1%
9.輸入電源:單相220或三相380V電壓,頻率為50Hz
10.工作時間:額定負載下允許連續60min;過壓1.1倍1分鐘
11.溫 升:額定負載下連續運行60min后溫升≤65K
12.保護功能:過壓、過流、零位啟動、系統失諧(閃絡)等保護功能
13.環境溫度:-20℃-55℃
14.相對濕度:≤90%RH
15.海拔高度:≤3000米
ZSBP-44kVA/44kV變頻串聯諧振耐壓試驗裝置主要功能及特征
ZSBP系列變頻串聯諧振耐壓試驗裝置,中試控股采用調節電源頻率的方式,使得電抗器與被試電容器實現諧振,從而在被試品上獲得高電壓大電流,因其所需電源功率小、設備重量輕體積小,在國內外得到了廣泛應用,是當前高電壓試驗的新方法和潮流。
特點:
試驗前條件分析
當我們拿到試驗之后,我們要分析試驗的主體是什么,比如:電力電纜、變壓器、GIS組合器還是母線等等,針對不同的內容所施加的電壓不一樣,像同樣是變壓器,中性點接地和不接地的電壓等級就不同,而且接線也不同,電壓和容量直接影響串聯諧振試驗裝置的配置方案,所說的配置方案也就是連接方式,串聯方式、怎么串聯以及串聯幾個等等。
要想達到串聯諧振的條件是當容抗等于感抗時,即可產生諧振的條件。
串聯諧振試驗中控制逆變器的方法有調幅控制和脈沖調頻控制兩種。脈沖頻率調制方法實現起來比較簡單,可以在下面兩種情況下使用。
1 )如果負載對工作頻率范圍沒有嚴格限制,這時頻率必須跟蹤,但相位差可以存在而不處于諧振工作狀態。
2 )如果負載的Q值較高,或者功率調節范圍不是很大,則較小的頻率偏差就可以達到調功的要求。
為了選對規格,請提供以下技術參數
1、電力變壓器:電壓等級,大容量,試驗性質(中性點耐壓或全絕緣耐壓)單相對地電容量;
2、電力電纜:電壓等級,大長度,截面積;
3、發電機、電動機:電壓等級(出口電壓或稱工作電壓),試驗電壓(耐壓值)單相對地電容量范圍(如0.2-0.55uF等);
4、開關、絕緣子、PT、CT、絕緣工器具、母線:電壓等級(或稱工作電壓);試驗電壓(耐壓值);
5、CVT效驗:電壓等級或稱工作電壓,試驗電壓(耐壓值)電容量范圍(如0.005-0.02uF)。
由于電力預防試驗大多是對于大容量和高電壓的電氣設備,建議采用工頻耐壓進行絕緣性能的檢測,也就是剔除了采用直流高壓發生器對于電氣設備絕緣性能檢測的使用要求,雖兩者都屬于破壞性試驗;
變頻串聯諧振,“變頻”在串聯諧振電路中,通過調整可變的頻率范圍產生諧振條件,“串聯”是指在整個電路中的鏈接方式,串聯時,電壓相加,電流不變,“諧振”是指的諧振電路,組合起來就是我們常說的串聯諧振試驗裝置。
(2)輸入信號頻率高于或低于石。對于輸入信號中頻率高于或低于fo的信號,由于與Ll和Cl的諧振頻率不等,這時Ll和Cl串聯電路失諧,其阻抗很大,其輸入信號不會被Ll和Cl旁路到地,而是加到了VT1基極,經VT1放大后輸出。
從這一放大器的頻率響應特性中可以看出,輸出信號中沒有頻率為fo的信號存在了。
2.串聯諧振高頻提升電路
圖4-66所示是采用LC串聯電路構成的高頻提升電路。電路中的VT1構成一級共發射極放大器,Ll和C4構成LC串聯諧振電路,用來提升高頻信號。Ll和C4串聯諧振電路的諧振頻率為五,它高于這一放大器工作信號的最高頻率。
點擊添加圖片描述(最多60個字)編輯
圖4-66
由于Ll和C4電路在諧振時的阻抗最小,與發射極負反饋電阻R4并聯后負反饋電阻最小,因此此時的放大倍數最大。這樣,接近fo的高頻信號得到提升,如圖中放大器的頻響特性曲線所示,不加Ll和C4時的高頻段響應曲線為虛線,加入Ll和C4時的為實線,顯然實線的高頻段響應優于虛線。
對于頻率遠低于fo的輸入信號,Ll和C4電路對其沒有提升作用。因為Ll和C4電路處子失諧狀態,其阻抗很大,此時的負反饋電阻為R4。
3.LC諧振電路工作原理分析小結
(1)掌握阻抗特性。了解這兩種諧振電路的一些主要特性是分析它們應用電路的基礎,其中最主要的是兩種諧振電路的阻抗特性,因為在各種電路的工作原理分析中,主要是依據電路的阻抗對電路進行分析。LC并聯諧振電路諧振時阻抗最大,LC串聯諧振電路最小,將它們對應起來比較容易記憶。
(2) LC串聯諧振電路諧振時阻抗最小。分析LC串聯諧振電路時要注意的事項同并聯諧振電路相同,只是串聯諧振時電路的阻抗最小,而并聯諧振時的阻抗最大。
對于LC串聯諧振電路而言,電路失諧時電路的阻抗很大,此時對于頻率低于諧振頻率的信號主要是因為電容Cl的容抗大了,對于頻率高于諧振頻率的信號主要是因為電感Ll的感抗大了。
(3) LC并聯諧振電路失諧時阻抗小。對于LC并聯諧振電路而言,電路失諧時電路的阻抗很小,此時頻率低于諧振頻率的信號主要是從電感Ll支路通過的,而頻率高于諧振頻率的信號主要是從電容Cl支路通過的。
(4)輸入信號頻率分成兩種情況。分析這兩種LC諧振電路的應用電路時,要將輸入信號頻率分成兩種情況:輸入信號頻率等于諧振頻率時的電路工作情況和輸入信號頻率不等于諧振頻率時的電路工作情況。
(5)阻尼電阻作用。在并聯諧振電路中加入阻尼電阻的目的是為了獲得所需要的頻帶寬度。所加電阻的阻值越小,頻帶越寬,反之則越窄。
輸入LC并聯諧振電路的信號頻率是很廣泛的,其中含有頻率為諧振頻率的信號。在眾多頻率的輸入信號中,電路只對頻率為諧振頻率的信號發生諧振,這時電路的阻抗最犬。諧振電路有一個頻帶寬度。在電路分析中,可以認為頻帶內的信號都與諧振頻率的信號一樣,被同樣地放大或處理;但對頻率偏離諧振頻率的信號,掌握的。頻帶的寬度與Q值大小有關,Q值大,則認為沒有受到放大或處理,這是電路分析要頻帶窄;Q值小,頻帶寬。
上一篇:220kV電纜交流電壓試驗裝置
快速跳轉